

EESSI: A streamed, production-quality, multi-platform, optimised scientific software stack

SIGHPC Education Webinar

Kenneth Hoste (UGent), Alan O'Cais (CECAM)

About us

Kenneth Hoste

- HPC sysadmin + user support at Ghent University (Belgium) since 2010
- Lead dev. of EasyBuild tool to install scientific software on HPC infra
- Active contributor to EESSI, partner in MultiXscale EuroHPC CoE

Alan O'Cais

- HPC RSE with CECAM, hosted at the University of Barcelona
- >10 years experience leading EU funded HPC projects
- Currently technical manager with MultiXscale, a EuroHPC CoE

The issue: getting scientific software installed

- Scientific software is a different breed of software
- Scope of (large-scale) computational science is expanding
 - More users (bioinformatics, AI/ML, ...)
 - Less experience in software deployment, optimization, etc.
- Explosion of open source scientific software in recent years
- Increasing variety in hardware
 - CPUs: Intel, AMD, Arm, POWER, soon also RISC-V, ...
 - Accelerators: NVIDIA, AMD, Intel Xe, ...
- Rise of the cloud: Microsoft Azure, Amazon EC2, Google, Oracle, ...
- In stark contrast: available manpower in HPC support teams!

EESSI in a nutshell

- European Environment for Scientific Software Installations (EESSI)
- Shared repository of (optimized!) scientific software *installations*
- Avoid duplicate work across (HPC) sites by collaborating on a shared software stack
- Uniform way of providing software to users, regardless of the system they use!
- Should work on any Linux OS (+ WSL, and possibly macOS) and system architecture
 - From laptops and personal workstations to HPC clusters and cloud
 - Support for different CPUs, interconnects, GPUs, etc.
 - Focus on performance, automation, testing, collaboration

https://www.eessi-hpc.org

https://eessi.github.io/docs (try out the pilot setup!)

Optimized scientific software installations

- Software should be optimized for the system it will run on
- Impact on performance is often significant for scientific software
- Example: GROMACS 2020.1 (PRACE benchmark, Test Case B)
- Metric: (simulated) ns/day, higher is better
- Test system: dual-socket Intel Xeon Gold 6420 (Cascade Lake, 2x18 cores)
- Performance of different GROMACS binaries, on exact same hardware/OS

Major goals of EESSI

- Avoid duplicate work (for researchers, HPC support teams, ...)
 - Tools that automate software installation process (EasyBuild, Spack) are not sufficient
 - Go beyond sharing build recipes => work towards a shared software stack
- Providing a truly **uniform software stack**
 - Use the (exact) same software environment everywhere
 - Without sacrificing performance for "mobility of compute" (like with containers/conda)
- Facilitate HPC training, development of (scientific) software, ...

Sounds great, but... how? We need...

• A way to get the software distributed globally

• Abstraction from the OS (like a container)

Optimized builds for a large range of hardware architectures

• Selection of the right optimization at runtime

(ideally automatic)

Sounds great, but... how? We need...

CernVM-FS

EASVRILLD

- A way to get the software distributed globally
 - Abstraction from the OS (like a container)
- Optimized builds for a large range of hardware architectures
 - Selection of the right optimization at runtime

(ideally automatic)

8

High-level overview of EESSI project

9

Compatibility layer https://github.com/EESSI/compatibility-layer

- Gentoo Prefix installation (in /cvmfs/.../compat/<os>/<arch>/)
- Set of tools & libraries installed in non-standard location
- Limited to low-level stuff, incl. glibc (no Linux kernel or drivers)
 Similar to the OS layer in container images
- Only targets a supported processor family (aarch64, ppc64le, x86_64, riscv64)
- Levels the ground for different client operating systems (Linux distros, later also macOS?)
- Currently in pilot repository:

/cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/aarch64 /cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/ppc64le /cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/x86_64 powered by

EESSI

Software layer

https://github.com/EESSI/software-layer

- Provides scientific software applications, libraries, and dependencies
- Optimized for specific CPU microarchitectures (Intel Haswell, ...)
 - Separate subdirectory/tree for each (in /cvmfs/.../software/...)
- Leverages libraries (like glibc) from compatibility layer (not from host OS)
- Installed with EasyBuild, incl. environment module files
- Lmod environment modules tool is used to access installations
- Best subdirectory for host is selected automatically via archspec

Software layer

Compatibility layer

Filesystem layer

host OS

https://github.com/EESSI/test-suite

Software testing is always important, but if everyone uses *the same stack*, even more so!

- Development of *portable* test suite with Re^IFrame
- ReFrame: designed to run tests on HPC clusters
 - Can interact with batch systems
 - Allows testing of applications at scale
 - Also allows simple tests on a single node (laptop, cloud node)
- We can test functionality (correctness), but also performance + scaling

Paper includes proof-of-concept performance evaluation compared to system software stack, performed at JUSUF @ JSC using GROMACS 2020.4, up to 16,384 cores (CPU-only)

Current status

- Working proof of concept (see https://eessi.github.io/docs/pilot)
- Ansible playbooks, scripts, docs at https://github.com/eessi
- CernVM-FS: Stratum 0 @ Univ. of Groningen + four Stratum 1 servers
- Software (CPU-only): Bioconductor, GROMACS, OpenFOAM, R, TensorFlow, ...
- Hardware targets:
 - {aarch64,ppc64le,x86_64}/generic
 - intel/{haswell, skylake_avx512}, amd/{zen2, zen3}, aarch64/{graviton2, graviton3), ppc64le/power9le
- Supported by Azure and AWS: sponsored credits to develop necessary infrastructure
- Going forward: Funded via MultiXscale, a EuroHPC Centre of Excellence

15

Current ongoing effort

- Developing a bot to automate workflow of adding software to EESSI repository
 - Enable community contributions to EESSI, via pull requests to GitHub repo
 - Automated building of software for different support CPU targets
 - Automated deployment of software into EESSI (under human supervision)
 - Eventually also testing of software installations before deploying them
- Add support for leveraging (NVIDIA) GPUs using software provided in EESSI
 - Complicating factors: (version of) GPU drivers, CUDA license, ...
- Working towards making EESSI stable and reliable...
- More details available in various presentations from EESSI Community Meeting (Sept'22) <u>https://eessi.github.io/docs/meetings/2022-09-amsterdam</u>

MultiXscale: Key Points

- EuroHPC Centre of Excellence
 - 4 year project, started Q1 2023 Ο
- Budget of $\sim 6M EUR$ (50% EU funding, 50% national funding)
 - Roughly 50% of funding for EESSI-related activities Ο
- Collaboration between EESSI and CECAM (total of 16 partners)
 - EESSI primarily addresses technical aspects Ο
 - CECAM network provides scientific expertise Ο
- Scientific target are multiscale simulations with 3 key use cases
 - Helicopter design and certification for civil transport Ο
 - Battery applications to support the sustainable energy transition Ο
 - Ultrasound for non-invasive diagnostics and biomedical applications Ο

the European Union

The project is supported by the EuroHPC Joint Undertaking and its members under Project 101093169

Demo scenarios

- Demo 1: Using an "empty" Ubuntu 22.04 VM in AWS (Arm Graviton2)
 - No CernVM-FS installed, EESSI not available yet, but only takes 2 min.
 - Requires admin rights (sudo to install extra packages)
 - Set up EESSI environment by sourcing init script
 - Running EESSI demo scripts
- Demo 2: On HPC-UGent infrastructure (**RHEL 8.6, AMD Rome**)
 - EESSI CernVM-FS repository readily available (by the friendly HPC-UGent sysadmins)

https://github.com/EESSI/eessi-demo

- Leverage software installations provided by EESSI in job scripts
- Anyone who has an account on the HPC-UGent infrastructure can do this!

Demo 1: Ubuntu 22.04 Arm VM in AWS (1/3)

- We need to:
 - Install CernVM-FS packages
 - Install EESSI CernVM-FS configuration (cvmfs-eessi-config* package)

https://github.com/EESSI/eessi-demo

- Set up minimal client configuration in /etc/cvmfs/default.local
- For production usage (especially large-scale), you should also:
 - Use a squid proxy, next to a local client cache (better start-up performance)
 - Set up your own Stratum-1 mirror server (protection against network disconnects)
 - Also recommended to "be a good citizen" in the EESSI CernVM-FS network

Demo 1: Ubuntu 22.04 Arm VM in AWS (2/3)

- Commands to install CernVM-FS + EESSI configuration for CernVM-FS
- Assumption: using Ubuntu as OS (only matters for apt-get/dpkg commands)

```
$ cat eessi-demo/scripts/install_cvmfs_eessi_Ubuntu.sh
sudo apt-get install lsb-release
wget https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest_all.deb
sudo dpkg -i cvmfs-release-latest_all.deb
sudo apt-get update
sudo apt-get install -y cvmfs
```

wget https://github.com/EESSI/filesystem-layer/releases/download/latest/cvmfs-config-eessi_latest_all.deb sudo dpkg -i cvmfs-config-eessi_latest_all.deb

```
sudo bash -c "echo 'CVMFS_CLIENT_PROFILE="single"' > /etc/cvmfs/default.local"
sudo bash -c "echo 'CVMFS QUOTA LIMIT=10000' >> /etc/cvmfs/default.local"
```

sudo cvmfs_config setup

https://github.com/EESSI/eessi-demo

Demo 1: Ubuntu 22.04 Arm VM in AWS (3/3)

- Once CernVM-FS + EESSI configuration is installed, you're good to go!
- Set up EESSI environment by sourcing the init script, load modules, run.

\$ ls /cvmfs/pilot.eessi-hpc.org
host injections latest versions

https://github.com/EESSI/eessi-demo

\$ source /cvmfs/pilot.eessi-hpc.org/latest/init/bash

Environment set up to use EESSI pilot software stack, have fun!

\$ module avail GROMACS TensorFlow OpenFOAM Bioconductor

----- /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/aarch64/graviton2/modules/all ------

GROMACS/2020.1-foss-2020a-Python-3.8.2 GROMACS/2020.4-foss-2020a-Python-3.8.2 (D) OpenFOAM/v2006-foss-2020a OpenFOAM/8-foss-2020a OpenFOAM/9-foss-2021a (D) R-bundle-Bioconductor/3.11-foss-2020a-R-4.0.0 TensorFlow/2.3.1-foss-2020a-Python-3.8.2

Demo 2: On HPC-UGent infrastructure

- <u>https://www.ugent.be/hpc/en/infrastructure</u>
- OS: RHEL 8.6 Slurm
- CPUs: mix of different generations of Intel and AMD CPUs
- Assumption: EESSI is already available to use
- HPC team has installed and configured CernVM-FS to provide access to EESSI
- Incl. properly setting up squid proxy (cache) + local Stratum-1 (caching + reliability)
- Researchers who have an HPC account can leverage software provided by EESSI
- Just source EESSI init script, load modules, and you're ready to go!

source /cvmfs/pilot.eessi-hpc.org/latest/init/bash

Try out EESSI yourself using Apptainer!

- Only Apptainer (or Singularity) is required to run the EESSI client container
- Should work on any Linux distribution, on Intel/AMD/Arm/POWER CPUs
- Detailed instructions available at <u>https://eessi.github.io/docs/pilot</u>

\$ apptainer shell --fusemount "\$EESSI_PILOT" docker://ghcr.io/eessi/client-pilot:centos7
...
Apptainer> ls /cvmfs/pilot.eessi-hpc.org/

2021.06 host_injections latest versions

Apptainer> source /cvmfs/pilot.eessi-hpc.org/latest/init/bash

Found EESSI pilot repo @ /cvmfs/pilot.eessi-hpc.org/versions/2021.12!
archspec says x86_64/amd/zen2
Using x86_64/amd/zen2 as software subdirectory.
Using /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86_64/amd/zen2/modules/all as the
directory to be added to MODULEPATH.
Found Lmod configuration file at
/cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86_64/amd/zen2/.lmod/lmodrc.lua
Initializing Lmod...
Prepending /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86_64/amd/zen2/modules/all to
SMODULEPATH...

EESSI and Education What can the impact be?

The European context - EuroHPC Joint Undertaking

- Developing a pan-European supercomputing infrastructure (including 2 in top 5 of TOP500)
- Supporting research and innovation activities:
 - Developing a European supercomputing ecosystem
 - Stimulating a technology supply industry
 - Making supercomputing resources *available* to a large number of public and private users, including small and medium-sized enterprises
- €1.1 billion for the period 2018-20
- For 2021-2027, total budget of about €7 billion
- Expectation:
 - $\circ\,$ Resources will be open to all but access will be competitive
 - Of the 32 EuroHPC countries, those with "culture" of HPC will have an implicit advantage

The European context - HPC Education and Training

- 2018 technical report by European Commission's science and knowledge service
 - "Academic offer and demand for advanced profiles in the EU Artificial Intelligence, High Performance Computing and Cybersecurity"

	Number	% of each domain over		
Domain	All levels	Bachelor	Master	total programmes in any domain
AI	2,054	765	1,289	3.9%
НРС	1,102	369	733	2.1%
CS	1,179	532	647	2.3%
Total nr of programmes in AI, HPC and CS	3,472	1,339	2,133	

TABLE 1. OVERVIEW OF ACADEMIC OFFER IN THE EU, 2018

License details Creator: Camilo Rueda Lopez | Credit: Camilo Rueda Lopez Copyright: Camilo Rueda Lopez

HPC Education and Training Crisis?

• UK had 62% of all EU HPC Programmes*

- Spending money on hardware is "easy", but hardware investment lifetime in HPC is ~5 years
- Bootstrapping that investment so that you see the impact in your IP and SMEs is hard
 - Need a lot of people who can leverage, improve and contribute to these kinds of infrastructures
 - Importing expertise is not a sustainable/desirable option (including internal EU "brain drain")
 - Need a talent identification/development/integration pipeline...

* The report used an AI methodology that was acknowledged as heavily biased towards English language courses

Scalable HPC Training

- HPC should not be for the elite, it's in everyone's interest for it to be an accessible tool for all scientists (both academia and industry)
- If you want to serve 32 countries (in which there are 1000s of 3rd level institutions and >500 million people), *everything* you do should be inherently scalable
- To cast a wide net, you need to address a lot of challenges

• Technical:

- connectivity, hardware infrastructure, software infrastructure, configuration
 Pedagogical:
 - (multilingual) education materials and the instructors to teach them

Cloud-based clusters as scalable resources

- "Real" systems come with strict security requirements and plenty of bureaucracy for the instructor/learner
 These are all intimidating barriers to the learning experience (particularly for beginners)
- If I run a large HPC centre, would I seriously consider running training courses for arbitrary European institutions and companies on my production system?

Cloud-based clusters are unencumbered

- Bring them up, take them down, throw them away
- \circ Can agree in advance that nothing there is considered secure

Cloud-based clusters don't have to be toys

- \circ Successfully tested EESSI with Infiniband fabric on Azure and EFA fabric on AWS
- \circ Can be configured to run with scalable file systems (e.g., Lustre)
- Cloud-based clusters can be reproducible, and reproducible means scalable (e.g. event specific)
 - Can contribute centrally to deployment tools (such as <u>Magic Castle</u>) to include lots of additional features such as JupyterHub, RStudio, VScode, visualisation capabilities,...

EESSI Facilitates HPC training

- EESSI can significantly reduce effort required to set up software infrastructure for HPC training sessions (introductory, software-specific, ...)
 - System independence of training content (to an extent)
 - Facilitate transition to new systems, and new hardware
- EESSI can be used as a base to provide additional (scientific) software that is required for the training
- Setting up a throwaway Slurm cluster in the cloud is made easy via tools such as CitC or Magic Castle (where EESSI is already a native option)
 - Also vendor-specific options such as CycleCloud and ParallelCluster
- Attendees can easily set up the same software environment later on their own system(s) by leveraging EESSI

EESSI and Education

- We've seen EESSI can be used as an infrastructure for educational content delivery
- Can also be leveraged to support content development, for example
 - "HPC development best practices" are a recurring theme
 - Continuous integration in an HPC context is *very* hard
 - Need bleeding-edge compilers, MPI runtimes, dependencies,...
 - Need access to a spectrum of hardware
 - EESSI can help support the development of CI workflows
 - Quickly reproducible building/testing environments on many architectures
 - Access to hardware as a service (via cloud providers)

Leveraging EESSI in CI environment

We have an EESSI GitHub Action as a shorthand for this:

```
name: ubuntu_gromacs
on: [push, pull_request]
jobs:
```

build:

```
runs-on: ubuntu-latest
```

steps:

- uses: actions/checkout@v2
- uses: eessi/github-action-eessi@main

with:

```
eessi_stack_version: '2021.06'
```

```
- name: Test EESSI
```

```
run:
```

module load GROMACS

```
gmx --version
```

shell: bash

See it in action in the github-essi-action repository:

github.com/EESSI/github-action-eessi

github.com/EESSI/github-action-eessi/blob/main/.github/workflows/gromacs-usage.yml

Leveraging EESSI GitHub Action

bu	ild	d 2 minutos ago in 1m 1s					Q Search logs	礅
		u z minutes ago in minis						
	ø	Set up job						
	Run actions/checkout@v2							
	Ø	Run eessi/github-act	ion-eessi@main	-eessi@main				
~	0	Test EESSI					59	
		♥ Run module load GG module load GROMAN gmxveriion shell: /usr/bin/bi env: EESSI_SILENT: 1 BASH_ENV: /cvmf: BASH_ENV: /cvmf: Aldert van Buuren Gerrit Groenhof Aleksei Iupinov Peter Kasson Justin A. Lemkul Pascal Merz Sander Pronk Alfons Sijbers Christian Wennberg	ROMACS cs ashnoprofilen s/pilot.eessi-hpc.o :-) GROMACS - gmx GROMACS is Rossen Apostolov Christian Blau Rudi van Drunen Anca Hamuraru Christoph Junghans Jiri Kraus Viveca Lindahl Pieter Meulenhoff Roland Schulz Peter Tieleman Maarten Wolf	orc -e -o pipefail { rg/versions/2021.06, , 2020.4-MODIFIED (- written by: Paul Bauer Viacheslav Bolnykh Anton Feenstra Vincent Hindriksen Joe Jordan Carsten Kutzner Magnus Lundborg Teemu Murtola Michael Shirts Jon Vincent	<pre>{0} /init/bash -: Herman J.C. Berendsen Kevin Boyd Alan Gray M. Eric Irngang Dimitrios Karkoulis Per Larsson Erik Marklund Szilard Pall Alexey Shvetsov Teemu Virolainen</pre>			
		Christian Wennberg	Maarten Wolf	Artem Zhmurov				
	22 and the project leaders:							

https://github.com/EESSI/github-action-eessi/actions/runs/3638276955/jobs/6140289351

EUROPEAN ENVIRONMENT FOR SCIENTIFIC SOFTWARE INSTALLATIONS Paper (open access): https://doi.org/10.1002/spe.3075

Website: https://www.eessi-hpc.org

Join our mailing list & Slack channel https://www.eessi-hpc.org/join

Documentation: https://eessi.github.io/docs

GitHub: https://github.com/eessi

Twitter: @eessi_hpc

EESSI YouTube channel

Monthly online meetings (first Thursday, 2pm CEST)