
Terraforming the Cloud to Teach HPC

Thu. Feb. 8 2024

Principal developer of Magic Castle
Université Laval
Calcul Québec
Digital Research Alliance of Canada

he/him
@cmd-ntrf

Félix-Antoine
Fortin

Terraforming the Cloud to Teach HPC

● Why Cloud to teach HPC?
● Overview of existing HPC in the cloud tools
● Introduction to Magic Castle
● Magic Castle in the Wild

Why Cloud to teach
HPC?

5

macro

6

Advanced Research Computing (ARC)
Research infrastructure landscape in Canada

Data centre

Local team

7

Advanced Research Computing (ARC)
Research infrastructure landscape in Canada

95+
% usage

150 workshops
/ year

How to train users at scale without
impacting research?

8

micro

Research support staff development

Over 200 research support staff from various scientific and engineering
backgrounds, but less and less system administrators by trade.

How to provide staff inexpensive parallel computing cluster
to experiment and learn?

Why are there more wizards in
Harry Potter than in
Lord of the Rings?

11

Why are there more wizards in
Harry Potter than in
Lord of the Rings?

Wizardry Schools

12

Traditional
Data centre

on-demand
Infrastructure

We want accessible, inexpensive sandbox environments,
designed to facilitate teaching and experimentation.

macro
controlled replicable

teaching environments to audiences of
variable sizes

micro
inexpensive sandboxes for individuals to
experiment and learn at their own pace.

16

Cloud can provide
the building blocks
for both scale:
macro and micro.

What are the existing
tools?

Name Creator First public release
date

Software
license

AWS ParallelCluster AWS November 12, 2018 Apache v2

Azure CycleCloud Microsoft October 17, 2018 MIT

Azure HPC On-Demand Microsoft April 23, 2021 MIT

Google HPC-Toolkit Google May 26, 2022 Apache v2

Slurm on GCP SchedMD March 14, 2018 Apache v2

Cloud specific

https://github.com/aws/aws-parallelcluster
https://github.com/Azure?q=cyclecloud&type=all&language=&sort=
https://github.com/Azure/az-hop
https://github.com/GoogleCloudPlatform/hpc-toolkit
https://github.com/SchedMd/slurm-gcp

Multi-cloud

Name Creator First public release
date

Software
license

Cluster in the Cloud Matt Williams - University of
Bristol

March 27, 2019 MIT

ElastiCluster Riccardo Murri - University of
Zurich

July 17, 2013 GPLv3

https://github.com/clusterinthecloud
https://github.com/elasticluster/elasticluster

Multi-cloud: supported providers

Name Alibaba
Cloud

AWS Azure Google
Cloud

Open
Stack

Oracle
Cloud

OVH

Cluster-in-the-Cloud no yes no yes no yes no

ElastiCluster no yes yes yes yes no -

Technologies
Name Infrastructure

definition
Configuration
management

Scheduler

AWS ParallelCluster CLI generating YAML Chef Slurm

Azure CycleCloud WebUI or CLI + templates Chef many

Azure HPC
On-Demand

YAML files + shell scripts Ansible, Packer Open PBS, Slurm

Cluster in the Cloud CLI generating TF code Ansible, Packer Slurm

ElastiCluster CLI interpreting an INI file Ansible Grid Engine, Slurm

Google HPC-Toolkit CLI generating TF code Ansible, Packer Slurm

Slurm GCP Terraform modules Ansible, Packer Slurm

Why proposing another tool?

1. We wanted an open source multi-cloud solution that included
OpenStack as a first class citizen.

2. We wanted Puppet to be the configuration management tool.
Regional partners are Puppet-shops or at least familiar with it.

3. All cloud API interactions would have to be done by a
third-party tool. No homemade CLI or wrapper.

Designing an accessible tool for learning HPC

● Focus on re-creating the HPC environment
● Provide an accessible experience for beginners, with

minimal prior HPC knowledge required
● Include key HPC features: job scheduling, data transfer,

parallel and distributed computation, GPU, etc.
● Require minimal knowledge of cloud and minimal cost
● It should take a few minutes to setup a sandbox.

Introduction to
Magic Castle

 Open source infrastructure-as-code aiming to
reproduce the HPC user experience in the

cloud

Design choices

● Infrastructure: 100% Terraform - no CLI or wrapper
○ A single interface to interact with all major cloud providers

● Configuration: cloud-init and Puppet
○ No knowledge of Puppet is required. The agent is autonomous.

● Scheduler: Slurm
○ Main scheduler used by the Alliance in Canada.

● Cloud providers: AWS, Azure, Google, OpenStack, OVH
○ Other providers can be added by following the documentation

https://github.com/ComputeCanada/magic_castle/blob/main/docs/design.md

● Spawn instances: management, login, compute, dtn, proxy, etc.
● Create volumes, network, network acls
● Create dns records
● Bootstrap passwords, certificates, secrets, keys, etc.
● Scale compute resources automatically based on job queue
● Customization via input parameters and YAML file

github.com/computecanada/magic_castle

Design choices

https://github.com/computecanada/magic_castle

28

plan apply

configure

enjoy!

Spack

Over 3000 scientific software are one
“module load” away thanks to

Users can also install software using

1k+ workshops
and university courses have used Magic Castle to
teach advanced research computing since its initial
release in 2018.

How does it
work?

Terraform is an infrastructure-as-code software tool created by
HashiCorp. Users define and provide data center infrastructure using a
declarative configuration language known as HashiCorp Configuration
Language (HCL).

What is Terraform?

How does it work?

source: https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code

How does it work?
resource "openstack_compute_instance_v2" "mgmt01" {
 name = "mgmt01"
 flavor_id = "p4-6gb"
 key_pair = "ssh-ed25519 ..."
 security_groups = ["default"]

 block_device {
 image_name = "Rocky-8"
 source_type = "image"
 volume_size = "50"
 boot_index = 0
 destination_type = "volume"
 delete_on_termination = true
 }
}

Infrastructure as code with higher level building blocks

IaC to create a Kubernetes cluster in GCP
module "gke" {
 source = "..."
 project_id = "<PROJECT ID>"
 name = "gke-test-1"
 region = "us-central1"
 zones = ["us-central1-a"]
 network = "vpc-01"
 http_load_balancing = false
 ...
}

How does it work?

$ terraform plan
$ terraform apply
Terraform will perform the following actions:
...
Do you want to perform these actions?
 Enter a value: yes

Terraform supports a number of cloud infrastructure providers such as
Amazon Web Services, Cloudflare, Microsoft Azure, IBM Cloud,
Serverspace, Google Cloud Platform, DigitalOcean, and OpenStack.

Combined with its ability to build infrastructure using high level building
blocks, Terraform is an excellent choice for building complex
environment like HPC clusters in the cloud.

How useful is Terraform?

Terraform can be installed easily on all platforms as it is a single
standalone Go binary.

You can download it from here :

Installing Terraform

https://developer.hashicorp.com/terraform/downloads

https://developer.hashicorp.com/terraform/downloads

infrastructure-as-code ⇒

41

The infrastructure is defined in a main Terraform module. Each cloud
provider has its dedicated main module:

42

The main modules share common inputs:

common/variables.tf

43

And common outputs:

common/variables.tf

common/outputs.tf

44

Each main module uses 3 common sub-modules:

common/variables.tf

common/outputs.tf

common/design

common/configuration

common/provision

45

common/design

design sub-module transforms the inputs into maps used to
generate the resources specific to each provider:

var.instances

var.volumes

var.cluster_name

var.domain out.instances

out.volumes

46

common/configuration

configuration sub-module creates the cloud-config file (user_data).
This file configures SSH access and bootstraps Puppet on first boot.

var.config_version

var.instances

...

out.user_data

out.hostkeys

out.terraform_data

CODE EDITOR

#cloud-config

runcmd:

 - yum -y upgrade -x puppet*

%{ if contains(tags, "puppet") }

 - yum -y install puppetserver

 - systemctl enable puppetserver

 - git clone ${puppetenv_git} /etc/puppetlabs/code/environments/production

%{ endif }

 - yum -y install puppet-agent

 - /opt/puppetlabs/bin/puppet config set certname ${node_name}

 - /opt/puppetlabs/bin/puppet config set waitforcert 15s

users:

 - name: ${sudoer_username}

 ssh_authorized_keys:

%{ for key in ssh_authorized_keys ~}

 - ${key}

%{ endfor ~}

common/provision

provision copies the state (instances, #cpus, #gpus, volumes, etc.)
via SSH to the Puppet server as a YAML file (terraform_data.yaml).

var.hieradata

var.instances

...
remote-exec

provisioner file

 "node4":

 "hostkeys":

 "ed25519": ssh-ed25519 …

 "rsa": ssh-rsa …

 "id": "droid-node4"

 "local_ip": "10.0.0.11"

 "public_ip": ""

 "specs": { "cpus": "2", "gpus": 0, "ram": "8000" }

 "tags": ["node", "pool"]

terraform_data.yaml

50

This set of common
submodules creates
an easy to use
interface without
vendor lock-in.

CODE EDITOR

 source = "./aws"

 config_git_url = "https://github.com/ComputeCanada/puppet-magic_castle.git"

 config_version = "13.0.0"

 cluster_name = "phoenix"

 domain = "your-domain-name.cloud"

 image = "ami-09ada793eea1559e6"

 instances = {

 mgmt = { type = "t3.medium", count = 1, tags = ["mgmt", "puppet", "nfs"] },

 login = { type = "t3.medium", count = 1, tags = ["login", "public", "proxy"] },

 node = { type = "t3.medium", count = 50,tags = ["node", "pool"] }

 }

 volumes = {

 nfs = {

 home = { size = 100 }

 project = { size = 500 }

 scratch = { size = 500 }

 }

 }

CODE EDITOR

 source = "./gcp"

 config_git_url = "https://github.com/ComputeCanada/puppet-magic_castle.git"

 config_version = "13.0.0"

 cluster_name = "phoenix"

 domain = "your-domain-name.cloud"

 image = "rocky-8-gcp-optimized"

 instances = {

 mgmt = { type = "n2-standard-2", count = 1, tags = ["mgmt", "puppet", "nfs"] },

 login = { type = "n2-standard-2", count = 1, tags = ["login", "public", "proxy"] },

 node = { type = "n2-standard-2", count = 50,tags = ["node", "pool"] }

 }

 volumes = {

 nfs = {

 home = { size = 100 }

 project = { size = 500 }

 scratch = { size = 500 }

 }

 }

CODE EDITOR

 source = "./gcp"

 config_git_url = "https://github.com/ComputeCanada/puppet-magic_castle.git"

 config_version = "13.0.0"

 cluster_name = "phoenix"

 domain = "your-domain-name.cloud"

 image = "rocky-8-gcp-optizmied"

 instances = {

 mgmt = { type = "n2-standard-2", count = 1, tags = ["mgmt", "puppet", "nfs"] },

 login = { type = "n2-standard-2", count = 1, tags = ["login", "public", "proxy"] },

 node = { type = "n2-standard-2", count = 50,tags = ["node", "pool"] }

 }

 volumes = {

 nfs = {

 home = { size = 100 }

 project = { size = 500 }

 scratch = { size = 500 }

 }

 }

The roles of each
instance are defined by
tags

terraform_data.yaml

54

55

mgmt1

login1 node1

puppet

node2 nodeXnodeY

nodeZ

Puppet manages the configuration

56

Puppet configuration customization: YAML

● Magic Castle configuration is done entirely through Puppet classes.
● There are over 40 classes that can be customized.
● Customization can happen before a cluster is launched or after.

profile::users::ldap::users :

 alice:

 groups: ['engineering']

 public_keys: ['ssh-rsa ... user@local' , 'ssh-ed25519 ...']

profile::fail2ban::ignoreip :

 - 132.203.0.0/16

https://github.com/computeCanada/puppet-magic_castle

57

58

Scaling &
Autoscaling

instances = {

 mgmt = {

 type = "n2-standard-2"

 count = 1

 tags = ["mgmt", "puppet", "nfs"]

 },

 login = {

 type = "n2-standard-2"

 count = 1

 tags = ["login", "public", "proxy"]

 },

 node = {

 type = "n2-standard-2",

 count = 3,

 tags = ["node"]

 }

}

Scaling

Autoscaling
instances = {

 mgmt = {

 type = "n2-standard-2"

 count = 1

 tags = ["mgmt", "puppet", "nfs"]

 },

 login = {

 type = "n2-standard-2"

 count = 1

 tags = ["login", "public", "proxy"]

 },

 node = {

 type = "n2-standard-2",

 count = 3,

 tags = ["node",,"pool"]

 }

}

Autoscaling: resume

mgmt

submit
job

resume
node[X-Y]

autoscale

API

patch
var.pool

execute
run

node provider

create
instances

register n
o

d
e

Autoscaling: suspend

mgmt

idle
timeout

suspend
node[X-Y]

autoscale

API

patch
var.pool

execute
run

node provider

destroy
instances

Terraform Cloud manages Terraform runs in a consistent and reliable
environment, and includes easy access to shared state and secret
data, access controls for approving changes to infrastructure.

Teams can connect Terraform to version control, share variables, run
Terraform in a remote environment, and securely store remote state.

Terraform Cloud is available as a hosted service at
https://app.terraform.io.

What is Terraform Cloud ?

https://app.terraform.io

1. Initialize a new git repository on GitLab or GitHub with
the Magic Castle release for your cloud provider

2. Add data.yaml to the repo, you will use this with
main.tf to define your cluster

3. Link the repo with a Terraform cloud workspace
4. Configure credentials for your providers, and a

workspace variable: pool = []
5. Define the workspace ID and an API token in data.yaml
6. Launch the run execution in Terraform Cloud

Autoscaling

See autoscaling documentation

https://github.com/ComputeCanada/magic_castle/blob/main/docs/terraform_cloud.md#enable-magic-castle-autoscaling

▷ The compute nodes can be heterogeneous
(GPU, x86, ARM64). Slurm determines which
nodes to power-up based on the job queue.

▷ The autoscaling logic is cloud-agnostic and is
expressed in 100 lines of Python.

▷ The API token requires only 2 permissions:
modify a variable and create a plan.

In the wild

● Uses Magic Castle as the hands-on
exercise platform for their entire
2023-2024 training program

● Provides and administers Magic
Castle clusters to graduate courses
from various disciplines: AI,
bioinformatics, neuroscience

https://drive.google.com/file/d/1FgtOjhnr7txCtoYnhRY2x44ltfaJo5-Z/view

uses Magic Castle as its platform to compile
and test software built with EasyBuild before
deploying them on CVMFS

Contributors
EESSI

software-layer

Create PR

Testing

Reviewers

Submit build

jobs

(automated)

Build nodes

x86_64

Generic haswell skylake

zen2 zen3

aarch64

generic neoverse_n1 neoverse_v1

bot
https://www.eessi.io/

https://www.eessi.io/

https://docs.jetstream-cloud.org/ui/cacao/deployment_magic_castle/

Magic Castle is integrated in CACAO
and can be launched easily in
Jetstream cloud.

https://docs.jetstream-cloud.org/ui/cacao/deployment_magic_castle/

★ Simple to use
★ Autoscaling infrastructure
★ Ideal software environment

to teach and learn HPC

cloud-agnostic and open source

https://www.github.com/computecanada/magic_castle

https://www.github.com/computecanada/magic_castle

