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1. PICUP

- Purpose: Lower barriers for faculty across the country to
integrate computation into their STEM courses

- PICUP has existed in some form for 12+ years
* http://compphysed.shodor.org/
* NSF-funded since 2015: www.gopicup.org

- The PICUP Collection

- for more details on the PICUP Community and Events

also see recording of first webinar in this series:
https://youtu.be/eXfIMXRDowg

2. How Computation Enhances Course Content
in the Sciences and Engineering


http://compphysed.shodor.org/
http://www.gopicup.org/
https://youtu.be/eXf1MXRDowg
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Spreadsheets-the Lost Art

SPREADSHEET PHYSICS

Charles Misner » Patrick Cooney

Originally Published: 1991
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My Model for Integrating Computation

(info intro courses populated by students who have never
programmed before)

Start with Excel
“"Guided Activities” in Excel (I GUIDE the construction of models in
Excel and students use their Excel as a GUIDE)

- Build algorithm visually (students have a working model)

- Investigate accuracy

- Use model to calculate something (investigate dynamic behavior)

- Use Excel implementation as a Guide to produce MATLAB or C or Python
version from scratch

- After 3 or 4 of these "Guided Activities”, the students code in MATLAB
or C or Python from scratch w/o spreadsheet GUIDE

—
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Computation in the Undergraduate Curriculum

* Early

* Often

* Enhances Content Coverage

* Exposes Students to More (and Interesting!), Sooner
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Damped, Driven Oscillations
(from Halliday, Resnick, and Walker, 9th ed.)

402 CHAPTER 15 OSCILLATIONS

b= 50 g/s 15-9 Forced Oscillations and Resonance

ileast
damping) A person swinging in a swing without anyone pushing it is an example of free
b=10g/s oscillation. However, if someone pushes the swing periodically, the swing has
~b= 140 g/s forced, or driven, oscillations. Two angular frequencies are associated with a sys-
tem undergoing driven oscillations: (1) the natural angular frequency w of the
system, which is the angular frequency at which it would oscillate if it were
suddenly disturbed and then left to oscillate freely, and (2) the angular frequency
06 08 10 12 14 w,; of the external driving force causing the_ driv_f.:n nm:i]latim_'m_ _ :
/e We can use Fig. 15-14 to represent an idealized forced simple harmonic oscil-
lator if we allow the structure marked “rigid support™ to move up and down at
a variable angular frequency w,. Such a forced oscillator oscillates at the angular
frequency w, of the driving force, and its displacement x(r) is given by

Amplitude

Fig. 15-16 The displacement amplitude
x,,, of a forced oscillator varies as the angu-
lar frequency wy; of the driving force is var-
ied. The curves here correspond to three
: X(1) = xp cos(wyl + ), 15-45
values of the damping constant b. (1) = Xm cos(awat + ), ( )
where x,, is the amplitude of the oscillations.
How large the displacement amplitude x,, is depends on a complicated
function of w,; and w. The velocity amplitude v, of the oscillations 1s easier 1o
describe: it 1s greatest when

iy = (resonance ), (15-46}

a condition called resonance. Equation 15-46 is also approximately the condition

—
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Hanging Spring

A

Driving Force NBWTOH'S 2nd IC(W:
F cos(mt)

\\ v F — - b - k e + F (.Ui

> E mg — bv (Y + Yeq) + Fo cos (wi)
k b F,

< — §j(t) = ——y(t) — —y(t) + — cos(wt).
m} m.f m.f

Solve via Analytical Guess
- or‘ -
Computationally via Euler-Cromer Algorithm

v(t+At) =v(t) +a(t) At

y (t+At) =y (i) +v(t+ At) At
—



BRADLEY University

"9 PICUP

PARTMERSHIP FOR INTEGRATION OF COMPUTATION INTO UNDERGRADUATE PHYSICS

Rocket Motion
(from Halliday, Resnick, and Walker, 9th ed.)

The ejection of mass from
the rocket’s rear increases
the rocket's speed.
/— System boundary

/-— System boundary
- =M M+ dM v v
—

v

(a} x ()

Fig. ®-22 (a) An accelerating rocket of mass M at time 1, as seen from an inertial
reference frame, (b) The same but at time 1 + dr. The exhaust products released during
interval di are shown,

Figure 9-225h shows how things stand a time interval df later. The rocket now
has velocity v + dv and mass M + dM, where the change in mass dM is a negative
quantity. The exhaust products released by the rocket during interval dr have
mass —dM and velocity U relative to our inertial reference frame.

Our system consists of the rocket and the exhaust products released during
interval dr. The system is closed and isolated, so the linear momentum of the sys-
tem must be conserved during dr; that is,

Pi= Py, (9-82)
where the subscripts { and [ indicate the values at the beginning and end ol time
interval dt. We can rewrite Eq. 9-82 as

My =—dM U + (M + dM)(v + dv), (9-83)

where the first term on the right is the linear momentum of the exhaust products
released during interval dr and the second term is the linear momentum of the
rockel at the end of interval dr.

We can simplily Eq. Y83 by using the relative speed v, between the rocket and
the exhaust products, which is related to the velocities relative to the frame with

velocity of ruckut) = ( velocity of rocket velocity of produc L'i)
relative to frame relative to products relative to frame

In symbaols, this means
(v+dv)=v,+ U,
or U=v+dv—yvy (9-84)
Substituting this result for U into Eq. 9-83 yields, with a little algebra,
—dM v, = Mdv. (9-85)
Dividing each side by dt gives us
dM dv
SR b

We replace dM/dr (the rate at which the rocket loses mass) by — R, where R is the
(positive) mass rate of fuel consumption, and we recognize that dv/di is the accel-
eration of the rocket. With these changes, Eq. 9-86 becomes

(9-86)

Ry, = Ma (first rocket equation). (9-87)

Equation 9-87 holds for the values at any given instant.

Note the left side of Eq. 9-87 has the dimensions of force (kg/s-m/s =
kg m/s* = N) and depends only on design characteristics of the rocket engine —
namely, the rate & at which it consumes fuel mass and the speed v, with which

,_—
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BRADLEY University

Rocket Motion (from Halliday, Resnick, and Walker, 9th ed.)

sec.9-12 Systems with Varying Mass: A Rocket

76 A 6090 kg space probe moving nose-first toward Jupiter at
105 mis relative to the Sun fires its rocket engine, ejecting 80.0 kg
of exhaust at a speed of 253 m/s relative to the space probe. What is
the final velocity of the probe?

77 ssm In Fig. 970, two long barges are moving in the same
direction in still water, one with a speed of 10 km/h and the other
with a speed of 20 km/h. While they are passing each other, coal is
shoveled from the slower to the faster one at a rate of 1000 kg/min.
How much additional force must be provided by the driving en-
gines of (a) the faster barge and (b) the slower barge if neither is to
change speed? Assume that the shoveling is always perfectly side-
F||-|d||-|9 the 'U'e|°city ways and that the frictional forces between the barges and the water
do not depend on the mass of the barges,

that mass is ¢jected relative to the rocket. We call this term Ry, the thrust of the
rocket engine and represent it with 7. Newton’s second law emerges clearly if we
write Eq. 9-87 as T = Ma, in which a 15 the acceleration of the rocket at the time
that its mass is M.

How will the velocity of a rocket change as it consumes its fuel? From Eq. 9-85

we have
aM
dv = —v I
Integrating leads to .
J’ " ¥ AM
Ve -y —
B L el ke M

in which M, is the initial mass of the rocket and M, its final mass. Evaluating the
integrals then gives

M
Vi ¥ = Vg In "J‘}"" (second rockel equation) (9-88)
!

for the increase in the speed of the rocket during the change in mass from M, 1o
My. (The symbol “In™ in Eq. 9-88 means the natural logarithm.) We see here the
advantage of multistage rockets, in which M, is reduced by discarding successive
stages when their fuel is depleted. An ideal rocket would reach its destination
with only its payload remaining,

Fig. 8-70 Problem 77.

78  Consider a rocket that is in deep space and at rest relative to
an inertial reference frame. The rocket’s engine is 1o be fired for o
certain interval. What must be the rocket’s mass ratio (ratio of ini-
tial to final mass) over that interval if the rocket’s original speed
relative to the inertial frame is to be equal to (a) the exhaust speed
(speed of the exhaust products relative to the rocket) and (b) 2.0
times the exhaust speed?

79 ssM W A rocket that is in deep space and initially at rest
relative to an inertial reference frame has a mass of 2.55 % 10° kg,

,_—
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time t+At
Saturn V Rocket Launch S
B CM
T VHAV My 2‘; + AATT;G Ve = Z Fc;t;t
/ / / INSTRUMENT
[ ) GAIE T UNIT
et Ay =IO R y@E [ non
SR Am . : : -
l . Very Difficult (or Impossiblel) Analytically 5 —
e (5~
____________ - or -
time t Computationally via Euler-Cromer Algorithm %
Ty 0 (b + At) = v (1) + a (1) At - g
y (t+ At) =y (t) + v (t + At) At
] Mr m,(t + At) = m,.(t) — ;At:




"9 PICUP

1VErSsl1

5
P
=
-
=
a'a

[ UNDERGRADUATE PHYSICS

NT

0N OF COMPUTATION

NTE J"':I

1P FOR |

RS

itude, Speed, Acceleration over Time

Apollo 17 Ascent: Alt

1 1 sy B B B

fwiy] aprangy

P T

EMR Shift

.u nn .u n u
w ["2) _0 Q o ["2] Q o
m m ~ - - Wy o
k _F 1 ' o
| L H j &
] m m
H H i oo [
: : ' i : ' g i3]
il : : { : : ! b
P ! H _ " i £
' 1 1 1 == Q
TER [ i T e i &' 8
P X 5 1 ' 1
188 i - : ] -
kg 1 i i i
1 4 1 1 1 1 =
fng i : - ] s
P &0 ' i 1 = r
i S i m “ i 5|
e SN\ UL (AU - SUNDU. | WSS Y| |-~ -
i ] : - i ==
1 I} 1 1 1 -
: ] | | i \8a
1 (=]
' ! ! ! 83 | s
- T B T T L LT PRSP P ] af
|m| 4 |m| 4 + DE =
m |
!
:
-

bbreviations:
IC

1l

«

Saturn ¥ 15t Stage
Saturn V 2nd Stage
Saturn V 3rd Stage
Center Engine Cutoff
Cutboard Engine Cutaff
First Engine Culoff

IVB
ECO
ECO
ECO

PO

B OOW Wil =

Earth Parking Crbit
Kax Dynamic Pressure

MR = Engine Mixure Ratio

ax O

S S

06:40 EPO Altitude 172km

0741
51l CECO

vy
(8] Amean ‘[sfuny] Ayaojan 15

,
H

F== :

i \

i L a1

! 51 / /

H b 1 )

1 noa 1 s

{ i i = s
S e e e R e e SRR T St
: ' S ! 5
! : : a | : :

i LT : = : :

i I =4 i 1 ' r

: : s i (R :

{ i ] = !

. NS . i _

H H Q i H 1 = H

L | — | H | o L o
e e S e e PR S TR S R e R W

f T[T ! i A \ H =\l
H | == | H \ = \ H 2

! ! : { : ' i =\ s

H 1 | H 1 i i

0 ] i 0 ] i i 5.1““ PJ.

{ : : f : ; el o

! X ! ! : ' ' Pa =y

! : : i : : e

} j } i j i = e
o P~ o L 4 ™M ™~ - o

Range Time [sec] 08:00 10:00 12:00

04:00

02:00

00:00




[B)BRADLEY University Pl C. UP

Discretization
-Physics: Schrodinger Equation
-Engineering Heat Equation, Diffusion Equation

* Explicit numerical approach is all that is needed
- add source terms
- more than 1D
- transient response

- beyond idealistic (needs to be easy for
analytical

approach)
- can be doe w/o continuum limit calculus

- mathematical preparation Taylor series
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Traditional Approach to Introducing QM Scattering

1. Solve Time-INDEPENDENT Schradinger Equation in different regions of PE

. 66 from “"Introduction to Quantum Mechanics"
by David J. Griffiths, Pearson Prentice Hall, 1995

Vix) A
Ae'tx Felkx
—_—
-— -~
Betkx j\/\ Ge—'k*
~ .
v X
Region 1 Region 11

Region TIT
Figure 2.15: Scattering from an arbitrary localized potential [V (x) = 0 except in
Region IT].

2. Calculate R and T from:




business in practice,
computer.38

Of course, the sion of these probabilities should be 1—and it is:

R+T=1

[2.140]

Notice that B and 7 are functions of g. and hence (Equations 2,130 and 2.1335)
of E:

I !
R R ——— [2.141]
| 4 (2K E /ma=) | + {me=/ 20" E)

The higher the energy, the greater the probability of transmission (which certainly
seems reasonable).

This 1s all very tidy, but there is a sticky matter of principle that we cannot
altogether ignore: These scattering wave functions are not normalizable, so they
don’t actually represent possible particle states. But we know what the resolution to
this problem 1s: We must form normalizable linear combinations of the stationary

.

s

by the resulting wave packets. Though straightforward in principle, this is a messy
business in practice, and at this point it is best turn the problem over to a
computer.”” Meanwhile, sinc 1s impossible 1o create a normalizable tree-particle

Wave TUNCHON WILROUL INVOIVING & Faiige 01 Cnergies, i and 1 snould ne mierpreted
as the approximate reflection and transmission probabilities for particles in the
viciniry of E.

Incidentally, 1t might strike you as peculiar that we were able to analyze a
quintessentially time-dependent problem (particle comes in, scatters off a potential,

"'This is not a nommalizable wave function. so the whsedige probability of finding the particle
at a particular location is not well defined; nevertheless, the refio of probabilities foe the incident and
reflecied waves ¢ meaningful. More on this in the next paragraph

18 g y . .

Numerical studies of wave packets scattering off wells and barriers reveal extraordinanly rich
structure, The classic analyss is A, Goldberg. Ho M. Schey, and 1. L Schwartz, Am. J. Pirve. 35, 177
(19671 more recent work can be Found on the Web

Time |'.-.'|]‘:"h. ndent Schrédinger Equation

A Vix)=ad(x)

-
X FIGURE 2.16: The delta-funcrion barrier.

and flies off 1o infinity) using starionary states, After all, v (in Equations 2.131
and 2.132) is simply a complex, time-independent, sinusoidal function, extending
(with constant amplitude) to infinity in both directions. And yet, by imposing
appropriate boundary conditions on this function we were able to determine the
probability that a particle (represented by a localized wave packet) would bounce
off, or pass through, the potential. The mathematical miracle hehind this is, |
suppose, the fact that by taking lincar combinations of states spread over all space.
and with essentially trivial time dependence, we can construcr wave functions that
are concentrated about a (moving) point, with quite elaborate behavior in time (see

Problem 2.43).
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VoLvme 35, Numeer 3 Mazrca 1967

Computer-Generated Motion Pictures of One-Dimensional Quantum-
Mechanical Transmission and Reflection Phenomena™

ABrAHAM GOLDBERG anp Harev M. Scoevf
Lawrence Radialion Laboralory, Universily of California, Livermaore, California
AND
Junan L. Scawarrs
Sctence Teaching Center, Massechusetts I'nstitute of Technology, Cambridpe, Massachiiseits
{ Received 4 October 1966)

We describe the details involved in presenling the time development of one-dimensional
quantum-mechanical systems in the form of computer-generated motion pictiures intended for
pedagogic purposes. Concentrating on refleetion-iransmission phenomena, we formulate the
problem in terms of a Gaussian wave packet impinging on a square well or barrier and heing
reflected and transmitted. The wave equation is solved numerically by methods discussed
in detail and photographs of the wave packet vs position at a variety of times and for a range
of projectile energies are given.

—
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A. Goldberg, H.M. Schey, and J.L. Schwartz, Am. J. Phys. 35, 177 (1967)

COMPUTER MOVIES 183
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Fia, 1. Gaussian wave-packel scattering from a square Fi1G. 4. Gaussian wave-packet scattering from a square
well. The average energy is one-half the well depth. well. The average energy is twice the well depth. Numbers
Numbers denote the time of each configuration in arbi- denote the time of each configuration in arbitrary units,
trary units.
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A. Goldberg, H.M. Schey, and J.L. Schwartz, Am. J. Phys. 35, 177 (1967) |

186 GOLDBERG,
simple way to avoid this problem; buot, for-
tunately, the discontinuities, while annoving, by
no means destrov the effect of the Alm. This
situation emphasizes the fact that the vse of
computers to illustrate time development in
phwsical svstems by motion pictures 12 still in a
preliminary, if no longer rudimentary, stage. Our
feeling, nonetheless, is that despite their short-
comings these hOlms already have considerable
merit ag a pedagogical tool and, as methods are
refined and scope broadened, they will play an

SCHEY,

AND SCHWARTZ

increagingly important role in science teaching
both at the college and graduate levels.
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